## K.L.E.SOCIETY'S RAJA LAKHAMAGOUDA SCIENCE INSTITUTE (AUTONOMOUS), BELAGAVI.

## Department of PG - Physics Course Outcome

## MSc III and IV Semester

| Course              |      | Topic                                    | Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSc III<br>Semester | 3.1- | Statistical<br>Mechanics                 | CO1: Introduction to statistical methods, formulation and interactions of macroscopic systems.  CO2: Basic methods, results and simple applications of statistical mechanics.  CO3: Acquire knowledge of distribution functions like Maxwell-Boltzmann, Bose – Einstein and Fermi Dirac and corresponding consequences.  CO4: Statistical thermodynamics provides platform for the study of Brownian motion, Lengevin equation, Fourier analysis, Fluctuations and Onsager relations.                                                                                                                                                                                                                                                           |
|                     | 3.2- | Mathematical<br>methods of<br>physics II | CO1: They study the applications of linear integral/differential equations & their relation with Volterra's equation. Hence they offer a powerful technique for solving practical problems. CO2: Inhomogeneous differential equations can be solved using Green's function to describe variety of phenomena ranging from motion of complex mechanical oscillators to the emission of sound waves from loudspeakers. CO3: Numerical methods such as iteration, bisection, Newton-Raphson method provide solution of algebraic and transcendental equations CO4: Study of group theory provides ability to generate a representation, to reduce it to its irreducible components & to use symmetry arguments to understand geometry of molecules. |
|                     | 3.3- | Solid state physics I (special subject ) | CO1: Band energy calculations by APW method and k-p method. CO2: Hall effect study for nature of charge carriers and carrier concentration. CO3: Study of magneto resistance phenomena. CO4: Study of Integer Quantum Hall Effect (IQHE) and fractional Hall effect. CO5: Boltzmann Transport Equations to study electrical/thermal conduction.                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | 3.4- | Physics of nanomaterials                 | CO1: Study the basics of Nanoscience including historical background, types of nano materials and quantum confinement.  CO2: Basics of quantum mechanics such as Wave-particle duality, Heisenberg uncertainty principle, Schrodinger wave equations etc.,  CO3: Physical and chemical methods of synthesizing nano materials enables students to synthesize a compound for its further studies.                                                                                                                                                                                                                                                                                                                                                |

|                    |                                                 | CO4: Learning the characterization techniques enables them to implement those practically during their project work. CO5: Mechanical, Electrical, Optical and magnetic properties of nano materials are studied, gaining the efficiency to differentiate various nano compounds.                                                                   |
|--------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSc IV<br>Semester | 4.1- Classical electrodynamics                  | CO1: To acquire basic knowledge of electrostatics and magnetostatics.  CO2: Various laws, equations and transformations of electrodynamics are studied.  CO3: Electromagnetic waves and radiations along with their interactions and importance in other branches of physics are studied.  CO4: To study the behavior of plasma in magnetic field. |
|                    | 4.2- Quantum mechanics II                       | CO1: Linear vector algebra forms base to machine learning in the field of engineering. CO2: Study of approximation methods has applications in molecular physics. CO3: Relativistic quantum mechanics provides information about the interconnection of quantum mechanics with other branches of physics.                                          |
|                    | 4.3- Solid state physics II (special subject)   | J 1                                                                                                                                                                                                                                                                                                                                                |
|                    | 4.4- Solid state physics III (special subject ) | 11                                                                                                                                                                                                                                                                                                                                                 |