K.L.E Society's Raja Lakhamagouda Science Institute (Autonomous), Belagavi

(PO's/PSO's/CO's)

Program: M. Sc. Mathematics (PG02A01)

Programme Outcomes

- PO1: Disciplinary knowledge and skills: Capable of demonstrating comprehensive knowledge and understanding of major concepts, theoretical principles in mathematics and its different subfields.
- PO2: Skilled communicator: Ability to transmit complex solution relating to mathematics in a clear and concise manner in writing and orally.
- PO3: Critical thinker and problem solver: Ability to employ critical thinking and efficient problem-solving skills in the allied areas of mathematics.
- PO4: Sense of inquiry: Capability for asking relevant/appropriate questions relating to issues and problems in the field of mathematics, and planning, executing and reporting the results of investigation.
- PO4: Ethical awareness/reasoning: Avoiding unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, and appreciate environmental and sustainability issues.
- PO6: Lifelong learners: Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and reskilling.

Programme Specific Outcomes

- PSO1: Demonstrate a fundamental/systematic or coherent understanding of the academic field of mathematics, its different learning areas and applications, and its linkages with related disciplinary areas/subjects.
- PSO2: Demonstrate a procedural knowledge that creates different types of professionals related to mathematics area of study, including research and development, teaching and government and public service.

- PSO3: Demonstrate a skill in areas related to specialization area relating the subfields and current developments in the academic field of mathematics.
- PSO4: Demonstrate subject-related and transferable skills that are relevant to mathematics -related job trades and employment opportunities.

Course Outcomes

Semester I

Course Type	Course Code	Course Title	Course Outcome
DSC-I	AM01	Real Analysis	CO1: Develop the logical thinking to proof the basic results of real analysis CO2: Apply Riemann Stieltjes Integration on different boundary value problems CO3: Gain knowledge of fundamental theorem of calculus CO4: Able to understand the theorems such as Heine-Borel and Bolazano-Weierstrass CO5: Gain knowledge of fundamental theorem of calculus
DSC-II	AM02	Group Theory	CO1: To extend result from Group theory to study the properties of Rings and Fields CO2: Homomorphism & isomorphism: Discrete mathematics to advance Abstract mathematics CO3: Understand the concept of sylow theorems & its applications
DSC-III	AM03	Linear Algebra	CO1: Apply the theory of linear algebra to specific research problems CO2: Find the eigenvalues and eigenvectors of a square matrix CO3: Non-diagonalizable matrix by upper triangular form / Jordan canonical form CO4: Apply linear algebra to solve initial and boundary value problems
DSC-IV	AM04	Ordinary Differential Equation	CO1: Identify, analyze and solve physical situations of ordinary differential equations CO2: Determine the solution of differential equations (initial & boundary value problems) CO3: Knowledge of Greens function, Sturm Liouville theory CO4: Able to understand initial value problems for homogeneous equations
DSC-V	AM05	Topology	CO1: Understand the concept of topology in real world problems CO2: Understand the concept of countability axioms CO3: Gain knowledge of normal, regular and completely regular spaces
DSC-VI	AM06	Complex Analysis	CO1: Gain the knowledge Line integral, Cauchy's theorem and integral formulaCO2: Able to represent the power series of an analytic functionCO3: Able to classify the singularities of analytic functionsCO4: Able to applySchwarz'slemmato characterize conformal maps

Semester II

Course Type	Course Code	Course Title	Course Outcome
DSC-I	BM01	Advancecalculus	CO1: Decide the behaviour of sequences and series using appropriate tests. CO2:Able to understand the various types of convergence of sequences CO3:Knowledge of Directional derivatives and their continuity CO4:Understand the sufficient condition for differentiability
DSC-II	BM02	Rings And Modules	CO1:The importance of Rings as fundamental object in Algebra CO2:Understand the homomorphism and isomorphism theorem of ring CO3:Understand the concept of unique factorization domain and Einstein's criterion of irreducibility for polynomials
DSC-III	BM03	Discrete Mathematical Structure	CO1:To prove Mathematical Theorems using mathematical induction.CO2: Identify functions and determine their properties.CO3:Determine the properties of relations and identifying equivalence and partial order relations.
DSC-IV	BM04	PartialDifferentialequations	CO1: Able to solve partial differential equation using Charpit's method CO2: Able to understand kelvin's Inversion theorem CO3: Able to Classify Second order partial Differential Equations
DSC-V	BM05	Numerical analysis	CO1:Solve algebraic and transcendental equation using an appropriate numerical method CO2:. Able to solve Nonlinear system of equations using Iterative methods CO3: To understand theoretical and practical aspects of use of numerical methods.
OEC-I	BM012	Statistical method and probability theory	CO1: Understand the conditional probability of random variables.CO2: Analyze data statistically and interpretation of the resultsCO3: Knowledge of test of significance
OEC-II	BM06	Mathematical Physics-I	CO1: Understand the Bessel functions of first kindCO2: Knowledge of Hermite polynomial and generating functionCO3: Able to apply Laplace transform for the solution of differential equation and problems in physics.
OEC-III	BMO6	Computer Application-I	CO1: Understand the basic knowledge of computers and applications CO2: Understand the basic structure of C program.
Practical	BM16	Python Lab	CO1: To write loops and decision statements in python. CO2:To build and package python modules for reusability.

Semester III

Course Type	Course Code	Course Title	Course Outcome
DSC-I	CM01	Functional analysis	CO1: Understand the concept of Normed linear space in real world problems CO2: Able to derive Hahn-Banach theorem CO3: Understand the concept of Uniform boundedness principle. CO4: Able to derive Spectral theorem for finite dimensional Hilbert spaces
DSC-II	CM02	Lebesgue Measure and Integration	CO1: Understand the sigma algebra of Lebesgue measurable sets CO2: Apply measure theory of functional analysis CO3: Able to understand the concepts of functions of Bounded Variations CO4: Knowledge of Egoroff's theorem and Lusin's Theorem
DSC-III	CM03	Numerical Analysis -II	CO1: To solve the problems in economics and related subjects.CO2: Demonstrate a knowledge and understanding of mathematical principles.CO3: To design and analysis of techniques to give a approximate but accurate solutions.
DSC-IV	CM04	Number Theory	CO1:Able to derive the fundamental theorem of arithmetic CO2:Computethe primitive roots CO3:UnderstandtheLegendresymbolanditsproperties
DSC-V	CM13	Fuzzy relations and logic	CO1: Understand the fuzzy Relations equations CO2: Knowledge of approximate reasoning. CO3: Knowledge of quantified and qualified proposition
OEC	CM11	Statistical Inference	CO1: Understand the concept of various distribution and its application CO2: Gain knowledge of Wald-Wolfowitz Run Test
OEC	CM06	Applications of Mathematical Physics	CO1: Able to solve linear integral equations of the first and second kind CO2: UnderstandtheEuler's, picard's, milne's, runge-Kutta method
OEC	CM08	Computer Applications- II(MATLABPROGRAMMING)	CO1: Understand the History of MATLAB CO2: Able to understand conditional statements and Loop
Practical		Latex and Beamer Lab	CO1: Describes the Development process of Latex CO2: To Understand the advantages of Latex over other traditional Softwares

Semester IV

Course Type	Course Code	Course Title	Course Outcome
DSC	DM01	Graph theory	CO1:Understand the basic concepts of graph theory
			CO2:Identify the real-life problems in terms of graph theory
			CO3:Understand the Eulerian and Hamiltonian graphs
			CO4: Understand the Krakowski criterion for planarity
DSC-	DM02	Algebraic Topology	CO1:Understand the orientation of Geometric Complexes
			CO2:Knowledge of fundamental concepts and methods in algebraic topology, in particular
			singular homology
			CO3:Understand the basic properties of covering spaces
			CO4: Able to prove Brower fixed point theorem
DSC	DM07	Differential Geometry	CO1: Compute the speed and length of the curve.
			CO2: Able to derive and apply Frenet formulae.
			CO3: Understand the concept of coordinate patches R3.
			CO4: Understand the concept of Gaussian and mean curvature.
			CO5: Knowledge of special varieties of curves
DSC	DM09	BanachAlgebra	CO1:Abletounderstand finite dimensional operators
			CO2: Able to prove spectral mapping theorem for polynomials
			co3 : Knowledge of spectra and the resolvent set
			CO4: Able to prove the spectral theorem forBounded
DSC	DM11	Wavelet Analysis	CO1: Provide time localized frequency information.
			CO2: Understand the behaviour of signals.
Project	DM10	Project	CO1: To lay a strong foundation in mathematics at PG level.
			CO2: Encourage students to take up projects in industry and research organizations